Frequency- and voltage monitoring

Monitoring relays - GAMMA series
Frequency and voltage monitoring in 3-phase mains in accordance with VDE 0126-1-1

Quick net error recognition
Connection of neutral wire necessary
Detection of off-grid operation
Integrated fail-safety
2 change over contacts
Width 45 mm
Industrial design

Read and understand these instructions before installing, operating or maintaining the equipment.

Danger!
Never carry out work on live parts! Danger of fatal injury! The product must not be used in case of obvious damage. To be installed by an authorized person.

Technical data

1. Functions

Frequency monitoring in Phase L1 in accordance with VDE 0126-1-1 with adjustable ON-Delay and adjustable thresholds.

WIN $_{\mathrm{F}}$ (Frequency) Monitoring the window between Min and Max
Voltage monitoring in 3-phase mains in accordance with VDE 0126-1-1 with adjustable ON-Delay, adjustable thresholds and detection of off-grid operation.

$$
\text { WIN }_{V} \text { (Voltage) Monitoring the window between Min and Max }
$$

Adjustable 10-minutes average threshold (Umax) in accordance with VDE 0126-1-1.
2. Time ranges

ON-Delay:
30 s to 3 min
OFF-Delay

$U_{\triangle} \leq 80 \%$ of U_{N}	$<200 \mathrm{~ms}$
$U_{\triangle} \geq 115 \%$ of U_{N}	$<200 \mathrm{~ms}$
$U_{\lambda} \leq 80 \%$ of U_{N}	$<200 \mathrm{~ms}$
$U_{\lambda} \geq 115 \%$ of U_{N}	$<200 \mathrm{~ms}$
$f \leq 47.5 \mathrm{~Hz}$	$<200 \mathrm{~ms}$
$f \geq 50.2 \mathrm{~Hz}$	$<200 \mathrm{~ms}$

3. Indicators
see display specification!

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1Nm
Terminals capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circuit

Supply voltage:
Tolerance:
Rated frequency:
Rated consumption:
230 V a.c
terminals A1-A2 (galvanically separated)
-20% to $+15 \%$
50 Hz
6VA (4W)

Duty cycle:	100\%
Reset time:	500 ms
Drop-out voltage:	30% of nominal supply voltage
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltage:	4 kV
6. Output circuit	
2 potential free change over contacts	
Rated voltage:	250 V a.c.
Switching capacity:	750 VA (3A / 250 V a.c.) If the distance between the devices is less than 5 mm !
Switching capacity:	1250VA (5A / 250 V a.c.) If the distance between the devices is greater than 5 mm !
Fusing:	5A fast acting
Mechanical life:	20×10^{6} operations
Electrical life:	2×10^{5} operations at 1000 VA resistive load
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltage:	4 kV
7. Measuring circuit	
Frequency monitoring	
Measured variable:	frequency of phase L1
Measurement input:	230 V a.c.
Terminals:	Na-L1a \& Nb-L1b
Switching threshold:	
Max:	50.1 to 50.2 Hz
Min:	47.5 to 49.9 Hz
Voltage monitoring U_{Δ}	
Measured variable:	voltage, a.c. Sinus
Measurement input:	$3 \times 400 \mathrm{~V}$ a.c.
Terminals:	Na-L1a-L2a-L3a \& Nb-L1b-L2b-L3b
Overload capacity:	
3N~ 400/230V	3N~ 600/346V
Input resistance:	
3N~ 400/230V	$1 \mathrm{M} \Omega$
Switching threshold U_{s} :	
Max:	105% to 115% of $U_{N}(420 \mathrm{~V}$ to 460 V$)$
Min:	80% to 95% of $U_{N}(320 \mathrm{~V}$ to 380 V$)$
Voltage monitoring U_{λ}	
Measured variable:	voltage, a.c. Sinus
Measurement input:	$3 \times 230 \mathrm{~V}$ a.c.
Terminals:	Na-L1a-L2a-L3a \& Nb-L1b-L2b-L3b
Overload capacity:	3N~ 600/346V

Technical data

Input resistance:
3N~400/230V $1 \mathrm{M} \Omega$
Switching threshold U_{s} :
Max: Min:

10-minutes-average Ūmax:
Overvoltage category:
Rated surge voltage:
110% to 115% of $U_{N}(253 \mathrm{~V}$ to 264.5 V$)$
80% to 95% of $U_{N}(184 \mathrm{~V}$ to 218.5 V$)$
110% to 115% of U_{N} III (in accordance with IEC 60664-1) 4 kV

8. Accuracy

Base accuracy voltage measurement : $\quad 1.5 \%$ of U^{2}
Temperature influence voltage measurement: $0.05 \% /{ }^{\circ} \mathrm{Com}$
Accuracy frequency measurement:

9. Ambient conditions

Ambient temperature:

Storage temperature:
Transport temperature:
Relative humidity:
Pollution degree: Vibration resistance:

Shock resistance:
-25 to $+55^{\circ} \mathrm{C}$
(in accordance with IEC 60068-1)
-25 to $+40^{\circ} \mathrm{C}$
(in accordance with UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15\% to 85%
(in accordance with IEC 60721-3-3 class 3K3)
3 (in accordance with IEC 60664-1)
10 bis 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms
(in accordance with IEC 60068-2-27)

Functions

If a failure already exists when the device is activated, the output relay R remains in off-position and the failure is displayed.
The monitoring of frequency and voltage works in parallel.
Window function WIN $_{F}$ (Frequency):
When the supply voltage U is applied, the output relay R switches into on-position after the set interval of the tripping delay (ON-Delay) has expired and if the frequency is within the adjusted window. As soon as the frequency leaves the acceptance region, the output relay R switches into off-position.
The output relay R switches into on-position again after the frequency reenters the acceptance region and the tripping delay (ON-Delay) has expired.

Window function WIN $_{v}$ (Voltage):
When the supply voltage U is applied, the output relay R switches into on-position after the set interval of the tripping delay (ON-Delay) has expired and if the voltage is within the adjusted window. As soon as the voltage leaves the acceptance region, the output relay R switches into off-position.
The output relay R switches into on-position again after the voltage reenters the acceptance region and the tripping delay (ON-Delay) has expired.

10-minutes-average
The 10-minute average value is used for monitoring the voltage quality. The floating average over 10 minutes will be measured for each input phase. The output relay R switches into off-position if the floating average is exceeded. The output relay R switches into on-position again after the floating average reenters the acceptance region and the tripping delay (ON-Delay) has expired.

These functions are implemented twice for fail-safe operation.

Relay test
The relay test is executed:

- after powering up
- after manually resetting an error
- after each parameter change

During the relay test a question mark is displayed at the bottom left corner of the display.

No relay test is executed when input is deactivated!

The following list shows causes and display for this error states:

Definition	Display	Remark
incorrect combination of SW versions	ERROR! VERSION	Enter to quit and reset device
communication error	ERROR! INTERCOM	
unaccaptable devitation between measured values of channel A and B	ERROR! CHA $<>C H B$	Enter to quit and reset device
although the relay outputs are "off" the auxiliary contact of the disconnection device signals "on" (after expiring of a delay)	ERROR! CONTACT	Enter to quit and reset device
inconsistent data and/or checksums	ERROR! DATA	Enter to quit and reset device

Display specification

Menu configuration

```
MEASURED VALUE
```

PARAMETER

Connections

G4PM400VDFA02 50 Hz VDE

Note that the terminals A1-A1 and A2-A2 are internally connected.

Dimensions

