1, Application

NDR1E-38/95 electronic overload relays apply to the overload, open-phase and three-phase current unbalance protection of three-phase AC motors in the circuit with the $\mathrm{AC} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, the rated voltage to 690 V and the current of $0.1 \mathrm{~A} \sim 95 \mathrm{~A}$; they can be used as motor starters with the NDC1-09~95 AC contactors.
2, Product Pictures

Model	NDR1E-38	NDR1E-95		
Picture				

3, Model and implication

ND $\underline{\mathrm{R}} 1 \mathrm{E}$-므므므/ㅁ

Table 1

NDR1E-38/95 Electronic Overload Relay Setting current/A	Fuse type to be used with the fuse		Matched with the NDC1-09~95 AC contactor (To be directly plugged with the contactor)	Product current specification code
	aM/A	gG/A	NDC1-	NDR1E
0.1~0.16	0.25	2	09~38	NDR1E-3811
0.16~0.25	0.5	2	09~38	NDR1E-3812
0.25~0.40	1	2	09~38	NDR1E-3813
0.40~0.63	1	2	09~38	NDR1E-3814
0.63~1	2	4	09~38	NDR1E-3815
1~1.6	2	4	09~38	NDR1E-3816
1.6~2.5	4	6	09~38	NDR1E-3817
2.5~4	6	10	09~38	NDR1E-3818
4~6	8	16	09~38	NDR1E-3821
5.5~8	12	20	09~38	NDR1E-3822
7~10	12	20	09~38	NDR1E-3823
9~13	16	25	09~38	NDR1E-3824
12~18	20	35	12~38	NDR1E-3825
17~25	25	50	18~38	NDR1E-3826
23~32	40	63	25~38	NDR1E-3827
30~40	40	80	32~38	NDR1E-3828
23~32	40	63	40~95	NDR1E-9531
30~40	40	100	40~95	NDR1E-9532
37~50	63	100	40~95	NDR1E-9533
48~65	63	100	50~95	NDR1E-9534
55~70	80	125	65~95	NDR1E-9535
63~80	80	125	65~95	NDR1E-9536
80~95	100	160	80~95	NDR1E-9537

4, Main technical parameters

Product basic-type code			NDR1E-38	NDR1E-95
Setting current range			0.1~40A	23~95A
Rated insulation voltage and frequency			$690 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	
Tripping level			10/20	10/20
Main circuit wiring	Flexible conductor (1 piece) without terminals	Minimum/ma ximum cross section	1.5/10 mm ${ }^{2}$	$4 / 35 \mathrm{~mm}^{2}$
	Flexible conductor (1 piece) with terminals		$1 / 4 \mathrm{~mm}^{2}$	$4 / 35 \mathrm{~mm}^{2}$
	Hard conductor (1 piece) without terminals		$1 / 6 \mathrm{~mm}^{2}$	$4 / 35 \mathrm{~mm}^{2}$
Terminal tightening torque of the main circuit			$1.5 \mathrm{~N} . \mathrm{m}$	9N.m
Auxiliary power voltage			$110 \mathrm{~V}, 220 / 230 \mathrm{~V}, 380 / 400 \mathrm{~V}(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$	
Auxiliary contact type			1NC+1NO (electrical without separation) NDR1E-םa口0 1NC+1NO (electrical separation) NDR1E-a 1	
Rated working voltage of the auxiliary contact			AC-15 230V/0.75A $400 \mathrm{~V} / 0.47 \mathrm{~A}$ DC-13 230V0.1A	
Auxiliary circuit wiring	Flexible conductor (1 piece) without terminals	Minimum/ma ximum cross section	$1 / 2.5 \mathrm{~mm}^{2}$	
	Flexible conductor (1 piece) with terminals		$1 / 2.5 \mathrm{~mm}^{2}$	
	Hard conductor (1 piece) without terminals		$1 / 2.5 \mathrm{~mm}^{2}$	
Auxiliary terminal tightening torque			0.8N.m	

Action features

Action features	SN	Setting current	Action time	Initial conditions	Ambient air temperature ${ }^{\circ} \mathrm{C}$
	2	1.05 Ie	$>2 \mathrm{~h}$	Cold state	
	3	1.2 Ie	$<2 \mathrm{~h}$	Following the sequence 1 test	$-25^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
	4	1.5 Ie	$<4 \min ($ class 10$)$ $<8 \min ($ class 20$)$	Following the sequence 1 test	
		7.2 Ie	Class $10: \quad 2 \mathrm{~s}<\mathrm{Tp} \leq 10 \mathrm{~s}$	Cold state	

			Class 20 : $4 \mathrm{~s}<\mathrm{Tp} \leq 20 \mathrm{~s}$	Cold state	
Open phase	When the one or two-phase current satisfies $I \geq 0.3$ Ie with the other-phase current as 0		$\leq 8 \mathrm{~s}$	Cold state or warm state	
Phase unbalance	When the phase unbalance rate is $\geq 60 \%$		≤ 40 s	Cold state or warm state	
Locking function	Tripping level	Conditions			
	Level 10	When the one or two-phase current satisfies $I \geq 0.8$ Ie with the other-phase current as 0 and the fault time is $\geq 8 \mathrm{~min}$ with the automatic reset function locked after failure for consecutive three times, it is necessary to perform the manual reset			
		When the overload current is $\mathrm{I} \geq 4 \mathrm{Ie}$ and the fault time is $\geq 8 \mathrm{~min}$ with the automatic reset function locked after failure for consecutive three times, it is necessary to perform the manual reset			
	Level 20	When the one or two-phase current satisfies $\mathrm{I} \geq 0$.8Ie with the other-phase current as 0 and the fault time is $\geq 14 \mathrm{~min}$ with the automatic reset function locked after failure for consecutive three times, it is necessary to perform the manual reset			
		When the overload current is $I \geq 4$ Ie and the fault time is $\geq 14 \mathrm{~min}$ with the automatic reset function locked after failure for consecutive three times, it is necessary to perform the manual reset			

Indication

Operating condition	Indicator status
Normal	Constantly on
Overload, test	Slow flashing
Unbalance	2-fast+1-slow flashing
Default phase	3-fast+1-slow flashing
Locked after tripped for three times	Quick flashing
Tripping	Off

5, Working conditions

Ambient temperature: $-25^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$;
Storage temperature: $-40^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$;
Altitude: The installation location does not exceed 3000 m above sea level;
Humidity: The maximum temperature is $+40^{\circ} \mathrm{C}$, the relative humidity of the air does not exceed 50%, and the higher relative humidity can be allowed at lower temperatures. for example , $20^{\circ} \mathrm{C}$ can be reach 90%.the occasional condensation due to temperature changes should be special measure.

Pollution level: level 3

6, Time-Current curves

The relationship between the average tripping time and the setting current multiple is shown, see the class 10 tripping characteristic curve and class 20 tripping characteristic curve.

7. Outline and installation dimensions

7.1 Installation Dimensions of NDR1E-38 with Contactor

Contactor model	a	b	c
NDC1-09/12	103	45	127
NDC1-18	103	45.5	127
NDC1-25	115	57	136
NDC1-32	115	57	136
NDC1-38	115	57	136

7.2 NDR1E-38+A1/R1-38 Guide Rail and Screw Installation

7.3 Installation Dimensions of NDR1E-95 with Contactor

Contactor model	a	b	c
NDC1-40/50/65	128	74.5	195
NDC1-80/95	134	84.5	200

7.4 NDR1E-95+A1/R1-95 Guide Rail and Screw Installation

7.5 External and Installation Dimensions of the Stand-alone Mounting Base

A1/R1-38 Outline and Installation Dimensions

A1/R1-95 Outline and Installation Dimensions
Note: All installation and outline dimensions are in mm with those not indicated with the tolerance as per " $x . x \pm 0.5, x \pm 1$ ".

8, Installation method

8.1 Directly inserted into the matching contactor.
8.2 Mount the relay to a separate mount using screws and then attach the stand-alone mount to the standard rail.

9. Packaging and storage

Each product uses a small package and is then placed in a large package. the packaged product should be stored in a warehouse with a smooth air , no temperature above the $+70^{\circ} \mathrm{C}$, no less than $-40^{\circ} \mathrm{C}$, and no acid in the stored ambient air. alkaline or other corrosive gases.
10, Environment
Product design meets RoHS requirements.
11. Accessory list and installation

NO
12, Notices
12.1 The product shall be installed and used in places without obvious impact or shock.
12.2 This product is maintenance-free. Therefore, do not open it for maintenance without authorization. a user must be responsible for addressing a product issue that occurs because the user disassembles the product without approval.
12.3 Reliable installation wiring is required to prevent the abnormal heat at the terminals due to poor wiring, thus resulting in the product damage.
12.4 Normal operation of the product requires the A1 and A2 auxiliary power supplies (namely the control power supply).
12.5 The product is set to the manual reset state when deliver.

