KAPPA series

7 Functions

7 time ranges
1 normally open contact, 1 normally closed contact
Supply voltage 24 V a.c./d.c. and $110-240 \mathrm{~V}$ a.c.
Pluggable
Width 38 mm
Installation design

Read and understand these instructions before installing, operating or maintaining the equipment.

Danger!
Never carry out work on live parts! Danger of fatal injury! The product must not be used in case of obvious damage. To be installed by an authorized person.

Technical data

1. Functions

The function has to be set before connecting the relay to the supply voltage.

Ip	Asymmetric flasher pause first
Ii	Asymmetric flasher pulse first
ER	ON delay and OFF delay with control contact
EWu	ON delay single shot leading edge voltage controlled
EWs	ON delay single shot leading edge with control contact Single shot leading and single shot trailling edge
Wt	with control contact
Pulse sequence monitoring	

2. Time ranges

Time range	Adjustment range	
1 s	50 ms	1 s
10 s	500 ms	10 s
1 min	3 s	1 min
10 min	30 s	10 min
1 h	3 min	1 h
10 h	30 min	10 h
100 h	5 h	100 h

3. Indicators

Green LED U/t1 ON: indication of supply voltage
Green LED U/t1 flashes: indication of time period t1
Green LED t2 flashes: indication of time period t1
Yellow LED R ON/OFF: indication of relay output

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on screw terminal socket 11-pols in accordance with
IEC 60067-1-18a (type R11X or ES12)
Mounting position: any
5. Input circuit

Supply voltage:
24 V d.c.
24 V a.c.
110-240V a.c.
Tolerance:
24 V d.c.
24 V a.c.
110-240V a.c.
Rated consumption: 24 V a.c./d.c.
110 V a.c.
240 V a.c.
Rated frequency:
Duty cycle:
Reset time:

Pins S2(+) - S7
Pins S2-S7
Pins S2-S10
$\pm 10 \%$
-15\% to +10\%
-15% to $+10 \%$

0,8VA (0,6W)
2,4VA ($0,6 \mathrm{~W}$)
19VA (1,1W)
a.c. 48 to 63 Hz

100\%
200ms

Residual ripple to d.c.:	10\%
Drop-out voltage:	>30\% of the supply voltage
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltage:	4 kV
6. Output circuit	
1 potential free normally	
open contact:	Pins S1-S4
1 potential free normally	
closed contact:	Pins S9-S11
Rated voltage:	250V a.c.
Contact material:	AgNi
Switching capacity:	1250VA (5A / 250V a.c.)
If the distance between the devices is less than 5 mm .	
Switching capacity:	2000VA (8A / 250 V a.c.)
If the distance between the devices is greater than 5 mm .	
Fusing:	8A fast acting
Prospective current value:	$1000 A_{\text {EFF }}$
Mechanical life:	20×10^{6} operations
Electrical life:	2×10^{5} operations at 1000 VA resistive load
Switching frequency:	max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltage:	4 kV
7. Control input	
Input not potential free:	pins S2-S5
Loadable:	yes
Line length:	max. 10m
Trigger level (sensitivity):	automatic adaption to supply voltage
Min. control pulse length:	d.c. $50 \mathrm{~ms} / \mathrm{a} . \mathrm{c} .100 \mathrm{~ms}$
8. Remote potentiometer	
Connections:	1M Ω potetiometer (type RONDO R2) pins S3-S6 (t2), S6-S8 (t1)
Line length:	max. 5m (twisted pair)
9. Insulation data	
Insulation:	Basic insulation
Dielectric test voltage:	1640V
10. Accuracy	
Base accuracy:	$\pm 1 \%$ of maximum scale value $\pm 5 \%$ using $1 \mathrm{M} \Omega$ remote potentiometer
Adjustment accuracy:	$\leq 5 \%$ of maximum scale value
Repetition accuracy:	$\pm 5 \%$ or $\pm 100 \mathrm{~ms}$
Voltage influence:	-
Temperature influence:	$\leq 0,05 \% /{ }^{\circ} \mathrm{C}$

11. Ambient conditions

Ambient temperature:
Storage temperature:
Transport temperature:
Relative humidity:
Pollution degree: $\quad 2$ (in accordance with IEC 60664-1)

Functions

The internal potentiometer is de-activated when a remote-potentio-meter is connected! The function has to be set before connecting the relay to the supply voltage.

Asymmetric flasher pause first (lp)

When the supply voltage U is applied, the set interval t 1 begins (green LED flashing slowly). After the interval t 1 has expired, the output relay R switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED flashing fast). After the interval t2 has expired, the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

Asymmetric flasher pulse first (li)
When the supply voltage U is applied, the output relay R switches into on-position (yellow LED illuminated) and the set interval t 1 begins (green LED flashing slowly). After the interval t1 has expired, the output relay switches into off-position (yellow LED not illuminated) and the set interval t2 begins (green LED flashing fast). After the interval t2 has expired, the output relay switches into on-position (yellow LED illuminated). The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

ON delay and OFF delay with control contact (ER)
The supply voltage U must be constantly applied to the device (green LED illuminated). When the control contact S is closed, the set interval t1 begins (green LED flashing slowly). After the interval t1 has expired (green LED illuminated), the output relay R switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval t2 begins (green LED flashing fast). After the interval t2 has expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). If the control contact is opened before the interval t1 has expired, the interval already expired is erased and is restarted with the next cycle.

ON delay and single shot leading edge voltage controlled (EWu)
When the supply voltage U is applied, the set interval t1 begins (green LED flashing slowly). After the interval t 1 has expired the output relay R switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED flashing fast). After the interval t2 has expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). If the supply voltage is interrupted before the interval $\mathrm{t} 1+\mathrm{t} 2$ has expired, the interval already expired is erased and is restarted when the supply voltage is next applied.

ON delay and single shot leading edge with control contact (EWs)
The supply voltage U must be constantly applied to the device (green LED illuminated). When the control contact S is closed, the set interval t 1 begins (green LED flashing slowly). After the interval $t 1$ has expired, the output relay R switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED flashing fast). After the interval t 2 has expired (green LED illuminated) the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Single shot leading and single shot trailing edge

with control contact (WsWa)

The supply voltage U must be constantly applied to the device (green LED U/t1 illuminated). When the control contact S is closed, the output relay R switches into on-position (yellow LED illuminated) and the set interval t1 begins (green LED U/t1 flashes). After the interval t1 has expired (green LED U/t1 illuminated), the output relay R switches into off-position (yellow LED not illuminated).
If the control contact is opened, the output relay again switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED t2 flashes). After the interval t2 has expired (green LED t2 not illuminated) the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times.

Pulse sequence monitoring (Wt)

When the supply voltage U is applied (green LED U/t illuminated), the output relay R switches into on-position (yellow LED illuminated). When the control contact S is closed, the set interval t begins (green LED U/t flashes). So that the output relay R remains in on-position, the control contact S must be opened and closed again within the set interval t. If this does not happen, the output relay R switches into off-position and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and re-applied.

Connections

24V a.c./d.c.

Dimensions

110-240V a.c.

Ordering information

Type	Functions	Supply Voltage	Part. No.
K3ZIF20 24V AC/DC 110-240V AC	Ip, li, ER, EWu, EWs, WsWa, Wt	24 V a.c./d.c. 110-240V a.c.	135700

