True power monitoring in 1- or 3-phase loads

Loadmonitors - GAMMA series
Multifunction
Fault latch
Recognition of disconnected load
Suitable for VFI (10 to 100 Hz)
Supply voltage selectable via power modules
2 change over contacts
Width 45 mm
Industral design

Read and understand these instructions before installing, operating or maintaining the equipment.

Danger!
Never carry out work on live parts! Danger of fatal injury! The product must not be used in case of obvious damage. To be installed by an authorized person.

Technical data

1. Functions

True power monitoring in 1- and 3-phase loads with adjustable thresholds (P1 and P2), timing for start-up suppression time and tripping delay separately adjustable, selectable fault latchand the following functions which are selected by means of rotary switch:

2 MIN	Minimum monitoring Minimum monitoring and recognition of disconnected consumers (relay ON if I<)
$2 \mathrm{MIN}+\mathrm{l}$ < Inv.	Minimum monitoring and recognition of disconnected consumers (relay OFF if I< Inv.)
2 MAX	Maximum monitoring Maximum monitoring and recognition of disconnected consumers (relay OFF if I<) Maximum monitoring and recognition of disconnected consumers (relay OFF if I< Inv.)
$2 \mathrm{MAX}+\mathrm{I}$ < Inv.	Monitoring the window between MIN and MAX
WIN	Monitoring the window between MIN and MAX and recognition of disconnected consumers
(relay ON if I<)	

2. Time ranges

Start-up suppression time Tripping delay:

Adjustment range

3. Indicators

Green LED U/t ON: Green LED U/t flashes: Yellow LED I=0 ON/OFF: Red LED Failure ON

Red LED Failure flashes:

Red LED Temp ON/OFF:
Yellow LED Rel 1 ON/OFF Yellow LED Rel 2 ON/OFF:
1s 100s
$0.1 \mathrm{~s} \quad 50 \mathrm{~s}$
indication of supply voltage indication of start-up suppression time indication of disconnected consumers indication of failure of the corresponding threshold P1 or P2 indication of tripping delay of the corresponding threshold P1 or P2 indication of overtemperature indication of relay output Rel 1 indication of relay output Rel 2

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circui

Supply voltage

12 to 500 V a.c

Tolerance:
Rated frequency:
Rated consumption:
Duration of operation:
Reset time
Ripple and noise
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
6. Output circuit

2 potential free change over contacts
Rated voltage: $\quad 250 \mathrm{~V}$ a.c.
Switching capacity: 750 VA (3A / 250 V a.c.)
If the distance between the devices is less than 5 mm !
Rated voltage: $\quad 1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V}$ a.c.)
If the distance between the devices is greater than 5 mm !
Fusing: $\quad 5 \mathrm{~A}$ fast acting
Mechanical life: $\quad 20 \times 10^{6}$ operations
Electrical life: $\quad 2 \times 10^{5}$ operations at 1000 VA resistive load
Switching capacity: max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
Withstand voltage across open contacts: 1000Veff a.c.
Overvoltage category: III (in accordance with IEC 60664-1)
Rated surge voltage: 6 kV
7. Measuring circuit

Measuring range P_{N} :
reversible between
$2 \mathrm{~kW}, 4 \mathrm{~kW}, 8 \mathrm{~kW}$ and 16 kW

Technical data

Wave form:
AC Sinus:
Sinus weighted PWM:
Measuring input voltage:
1-phase load:
3-phase load:
Overload capacity:
1-phase load:
3-phase load:
Input resistance:
Measuring input current:
Measuring range 2 kW , 4 kW :
Measuring range $8 \mathrm{~kW}, 16 \mathrm{~kW}$:
Overlaod capacity:
Input resistance:
1<-recognition:
Power interruption:
Measuring range $2 \mathrm{~kW}, 4 \mathrm{~kW}$:
Measuring range $8 \mathrm{~kW}, 16 \mathrm{~kW}$:
Current flow recognition:
Measuring range $2 \mathrm{~kW}, 4 \mathrm{~kW}$:
Measuring range $8 \mathrm{~kW}, 16 \mathrm{~kW}$:
Switching threshold P :
Switching threshold P1:
Switching threshold P2:
Hysteresis:
Overvoltage category:
Rated surge voltage:

10 to 400 Hz
10 to 100 Hz
terminals L1-L2-L3
42 to 690 V a.c.
3~ 42 to $690 / 400 \mathrm{~V}$
796 V a.c.
3~ 796/460V
$1.25 \mathrm{M} \Omega$
terminals i-k
0.2 to 8A
0.4 to 16 A (for $\mathrm{I}>16 \mathrm{~A}$ distance $>5 \mathrm{~mm}$)

18A permanent
$<10 \mathrm{~m} \Omega$

200mA
400 mA
240mA
480 mA
10% to 120% of P_{N}
5% to 110% of P_{N}
1% of maximum value of the
measuring range
III (in accordance with IEC 60664-1) 6kV
8. Control contact Y (equipotential with measuring circuit)

Function:
latch (terminal Y1-Y2 bridged)
Loadable: no
Control pulse length:
Reset:
normally closed contact in the input circuit
9. Accuracy

Base accuracy:
Frequency response: Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
10. Ambient conditions

Ambient temperature:

Storage temperature:
Transport temperature:
Relative humidity:

Pollution degree:
Vibration resistance:
Shock resistance:
$\pm 2 \%$ (of maximum scale value)
$\pm 0.025 \% / \mathrm{Hz}$
$\leq 5 \%$ (of maximum scale value)
$\pm 2 \%$
$\leq 0.02 \% /{ }^{\circ} \mathrm{C}$
-25 to $+55^{\circ} \mathrm{C}$
(in accordance with IEC 60068-1)
-25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
15% to 85%
(in accordance with IEC 60721-3-3
class 3K3)
2 (in accordance with EN 60255-27)
class 1 (in accordance with EN 60255-22-1)
class 1 (in accordance with EN 60255-22-2)

Failure of the corresponding threshold P 2 flashes).
After the interval has expired (red LED Failure of the corresponding threshold P2 illuminated), the output relay Rel 2
switches into off-position (yellow LED Rel 2 not illuminated).
As soon as the measured true power exceeds the adjusted value at the corresponding regulator P1 or P2 (red LED Failure of the corresponding threshold P1 or P2 not illuminated), the output relay Rel 1 or Rel 2 switches into on-position again (yellow LED Rel 1 or Rel 2 illuminated).

Maximum monitoring (2MAX)

The adjusted threshold for P1 must be greater than the adjusted threshold for P2. When the measured true power exceeds the value adjusted at the P2-regulator, the set interval of the tripping delay (Delay) begins (red LED Failure of the corresponding threshold P2 flashes). After the interval has expired (red LED Failure of the corresponding threshold P2 illuminated), the output relay Rel 2 switches into offposition (yellow LED Rel 2 not illuminated). When the measured true power exceeds the value adjusted at the P1-regulator, the set interval of the tripping delay (Delay) begins (red LED Failure of the corresponding threshold P1 flashes). After the interval has expired (red LED Failure of the corresponding threshold P1 illuminated), the output relay Rel 1 switches into off-position (yellow LED Rel 1 not illuminated). As soon as the measured true power falls below the adjusted value at the corresponding regulator P 1 or P 2 (red LED Failure of the corresponding threshold P1 or P2 not illuminated), the output relay Rel 1 or Rel 2 switches into on-position again (yellow LED Rel 1 or Rel 2 illuminated).

Functions

When the supply voltage U is applied (green LED U / t illuminated) the output relays Rel 1 and Rel 2 switches into on-postion (yellow LED Rel 1 and Rel 2 illuminated) and the set interval of the start-up suppression time (Start) begins (green LED U/t flashes). Changes of the measured true power during this period don't affect the state of the output relays Rel 1 and $\operatorname{Rel} 2$. After the interval has expired the green LED U/t illuminates steadily.

Minimum monitoring (2MIN)

The adjusted threshold for P1 must be greater than the adjusted threshold for P2. When the measured true power falls below the value adjusted at the P1-regulator, the set interval of the tripping delay (Delay) begins (red LED Failure of the corresponding threshold P1 flashes). After the interval has expired (red LED Failure of the corresponding threshold P1 illuminated), the output relay Rel 1 switches into off-position (yellow LED Rel 1 not illuminated).

Functions

Window function (WIN)
The adjusted threshold for P1 must be greater than the adjusted threshold for P2. When the measured true power falls below the value adjusted at the P2-regulator, the set interval of the tripping delay (Delay) begins (red LED Failure of the corresponding threshold P2 flashes). After the interval has expired (red LED Failure of the corresponding threshold P2 illuminated), the output relays Rel 1 and Rel 2 switches into off-position (yellow LED Rel 1 and Rel 2 not illuminated). The output relays Rel 1 and Rel 2 switches into on-position again (yellow LED Rel 1 and Rel 2 illuminated), as soon as the the measured true power exceeds the adjusted value at the P2-regulator (red LED Failure of the corresponding threshold P2 not illuminated).
When the measured true power exceeds the value adjusted at the P1-regulator, the set interval of the tripping delay (Delay) begins (red LED Failure of the corresponding threshold P1 flashes). After the interval has expired (red LED Failure of the corresponding threshold P1 illuminated), the output relays Rel 1 and Rel 2 switches into off-position (yellow LED Rel 1 and Rel 2 not illuminated). As soon as the measured true power falls below the value adjusted at the P1-regulator (red LED Failure of the corresponding threshold P1 not illuminated) the output relays Rel 1 and Rel 2 switches into on-position again (yellow LED Rel 1 and Rel 2 illuminated).

Minimum- and maximum monitoring (MIN/MAX)

The adjusted threshold for P1 must be greater than the adjusted threshold for P2. When the measured true power falls below the value adjusted at the P2-regulator, the set interval of the tripping delay (Delay) begins (red LED Failure of the corresponding threshold P2 flashes). After the interval has expired (red LED Failure of the corresponding threshold P2 illuminated), the output relay Rel 2 switches into offposition (yellow LED Rel 2 not illuminated). The output relay Rel 2 switches into on-position again (yellow LED Rel 2 illuminated), as soon as the the measured true power exceeds the adjusted value at the P2-regulator (red LED Failure of the corresponding threshold P2 not illuminated).
When the measured true power exceeds the value adjusted at the P1-regulator, the set interval of the tripping delay (Delay) begins (red LED Failure of the corresponding threshold P1 flashes). After the interval has expired (red LED Failure of the corresponding threshold P1 illuminated), the output relay Rel 1 switches into off-position (yellow LED Rel 1 not illuminated). As soon as the measured true power falls below the value adjusted at the P1-regulator (red LED Failure of the corresponding threshold P1 not illuminated) the output relay Rel 1 switches into on-position again (yellow LED Rel 1 illuminated).

Fault latch
The fault latch can be activated via bridge between the terminals Y1 and $Y 2$. If the fault latch is activated and a failure has occured (red LED of the corresponding threshold or red LED Temp illuminated), the failure can only be reset by interrupting the supply voltage or pressing the reset-key. After resetting the failure and re-applying of the supply voltage, the output relays Rel 1 and Rel 2 switches into on-position again and the measuring cycle begins with the set interval of the start-up suppression time (Start).

Note:
The fault latch remains active inspite of a $\mathrm{I}=0$ recognition!
Example: Window function (WIN) - Resetting the fault latch by interrupting the supply voltage

Example: Window function (WIN) - Resetting the fault latch by pressing the reset-key

Functions

Recognition of disconnected consumers
The following applies for functions, where the $\mathrm{I}=0$ recognition is activated:
When the current flow between i and k is interrupted (yellow LED $\mathrm{I}=0$ illuminated) and the minimum-, window- or minimum- and maximum function is activated ($2 \mathrm{MIN}+\mathrm{I}=0, \mathrm{WIN}+\mathrm{I}=0, \mathrm{MIN} / \mathrm{MAX}+\mathrm{I}=0$), the output relays Rel 1 and Rel 2 remains into on-position (yellow LED Rel 1 and LED Rel 2 illuminated).
When the maximum function is activated ($2 \mathrm{MAX}+1=0$), the output relays Rel 1 and Rel 2 switches into off-position (yellow LED Rel 1 and LED Rel 2 not illuminated).
When the current flow restores, the measuring cycle is restarted with the set interval of the start-up suppression time (Start) (green LED U/t flashes).

The following applies for functions, where the inverted $\mathrm{I}=0$ recognition is activated:
When the current flow between i and k is interrupted (yellow LED $\mathrm{I}=0$ illuminated), the output relays behaves inverse to the above mentioned function.
If the minimum-, window- or minimum- and maximum function ($2 \mathrm{MIN}+$ = $=0 \operatorname{lnv}$., $\mathrm{WIN}+$ = $=0 \operatorname{Inv}$., MIN/MAX+|=0 Inv.) is activated, the output relays Rel 1 and Rel 2 switches into off-position (yellow LED Rel 1 and LED Rel 2 not illuminated).
When the maximum function is activated ($2 \mathrm{MAX}+\mathrm{I}=0 \mathrm{Inv}$.) , the output relays Rel 1 and Rel 2 remains in on-position (yellow LED Rel 1 and LED Rel 2 illuminated).
When the current flow restores, the measuring cycle is restarted with the set interval of the start-up suppression time (Start) (green LED U/t flashes).
$\mathrm{I}=0$ with minimum monitoring $(2 \mathrm{MIN}+\mathrm{I}=0)$

$\mathrm{I}=0 \operatorname{lnv}$. with minimum monitoring ($2 \mathrm{MIN}+\mathrm{I}=0 \operatorname{lnv}$.)

$\mathrm{I}=0$ with maximum monitoring ($2 \mathrm{MAX}+\mathrm{l}=0$)

$\mathrm{I}=0$ Inv. with maximum monitoring ($2 \mathrm{MAX}+\mathrm{I}=0 \operatorname{Inv}$.)

Connections

Connected $3 \sim 400 / 690 \mathrm{~V}$ with power module 24 V a.c. without fault latch $\mathrm{I}_{\mathrm{N}}<16 \mathrm{~A}$

Connected $3 \sim 500 \mathrm{~V}$ with power module 500 V a.c. with fault latch $\mathrm{I}_{\mathrm{N}}<16 \mathrm{~A}$

Connected 3~230/400V with power module 230 V a.c. with fault latch $\mathrm{I}_{\mathrm{N}}<16 \mathrm{~A}$

Connected $3 \sim 400 / 690 \mathrm{~V}$ with power module 400 V a.c. with fault latch and current transformer $\mathrm{I}_{\mathrm{N}}>16 \mathrm{~A}$

Note:
Before working on current transformer circuits, these shall be shortcircuited.

Dimensions

TELE Haase Steuergeräte Ges.m.b.H.
Vorarlberger Allee 38
A-1230 Wien
RELEASE 2011/02
Subject to alterations and errors

