

Контроль напряжения в 3-фазных сетях

Реле контроля - серии GAMMA

Многофункциональное

Контроль чередования фаз и на обрыв фаз

Подключаемая функция обнаружения асимметрии

Необязательное подключение нейтрального проводника

Обнаружение обрыва нейтрального проводника

Напряжение питания определяется модулем питания / 24-240VAC/DC

1 перекидной контакт

Ширина 22.5mm

Промышленное исполнение

Технические характеристики

Контроль напряжения в 3-фазных сетях с настраиваемыми порогами срабатывания, настраиваемая задержка срабатывания, контроль чередования фаз и на обрыв фаз, контроль асимметрии с настраиваемым порогом. Режим работы выбирается поворотным переключателем:

UNDER Контроль напряжения на понижение

UNDER+SEQ Контроль напряжения на понижение + чередование WIN Контроль напряжения в окне между Min и Max WIN+SEQ Контроль в окне между Міп и Мах + чередование

2. Задержки времени

Настраиваемый диапазон

Задержка включения: Задержка срабатывания: 0.1s 10s

3. Индикация

Красный LED ON/OFF: индикация срабатывания по соотв. порогу Красный LED мигает: индикация отсчета задержки срабатывания

по соответствующему порогу

Желтый LED ON/OFF: индикация состояния выходного реле

4. Механическое исполнение

Самозатухающий пластиковый корпус, IP рейтинг IP40 Монтаж на DIN-рейку TS 35 в соответствии с EN 60715

Монтажная позиция: любая

Ударопрочные клеммы в соответствии с VBG 4 (требуется PZ1),

IP рейтинг IP20

Момент затяжки max. 1Nm

Размеры клемм

1 x 0.5 - 2.5mm² для много-/одножильного кабеля 1 x 4mm² для одножильного кабеля 2 x 0.5 - 1.5mm² для много-/одножильного кабеля 2 x 2.5mm² для гибкого одножильного кабеля

5. Цепь питания

Напряжение питания:

12 -400V AC Клеммы А1-А2 (гальванич. развязаны) 24V DC определяется модулем питания

TR2 или SNT2

Допустимые отклонения: соответствуют спецификации на модуль

питания

Номинальная частота: соответствует спецификации на модуль

питания

Потребляемая мощность: 2VA (1W) Продолжительность работы: 100% Время сброса: 500ms Форма волны для АС: Sinus Остаточные пульсации для DC: 10%

Напряжение отпускания: >30% напряжения питания III (в соответствии с IEC 60664-1) Категория перенапряжения:

Ном. импульсное напряжение: 4kV 6. Выходная цепь

1 сухой перекидной контакт 250V AC Номинальное напряжение: Переключающая способность

если расстояние меньше 5mm: 750VA (3A / 250V AC) 1250VA (5A / 250V AC) если расстояние больше 5mm: Предохранитель: 5А быстрого действия 20 x 106 операций

Механическая долговечность: Электрическая долговечность: 2 х 10⁵ операций при 1000VA резист. нагрузке

Частота переключений: max. 60/min при 100VA резист. нагрузке

max. 6/min при 1000VA резист. нагрузке (в соответствии с IEC 60947-5-1)

Категория перенапряжения: III (в соответствии с IEC 60664-1)

4kV Ном. импульсное напряжение:

7. Цепь измерения

max. 20A (в соответствии с UL 508) Предохранитель:

Форма сигнала: AC Sinus (48 - 63Hz)

Напряжение:

3(N)~ 115/66V Клеммы (N)-L1-L2-L3 (G2PM115VSY10) 3(N)~ 230/132V Клеммы (N)-L1-L2-L3 (G2PM230VSY10) 3(N)~ 400/230V Клеммы (N)-L1-L2-L3 (G2PM400VSY10)

Перегрузочная способі

3(N)~ 115/66V 3(N)~173/100V (G2PM115VSY10) 3(N)~ 230/132V 3(N)~345/199V (G2PM230VSY10) 3(N)~ 400/230V 3(N)~600/346V (G2PM400VSY10)

Входное сопротивление:

3(N)~ 115/66V 220kΩ (G2PM115VSY10) 3(N)~ 230/132V 470kΩ (G2PM230VSY10) 1MΩ (G2PM400VSY10) 3(N)~ 400/230V

Порог переключения Max:

-20% - +30% от U_N Min: -30% - +20% от U៉ Асимметрия: 5% - 25%

Категория перенапряжения:

III (в соответствии с IEC 60664-1)

Ном. импульсное напряжение: 4k\/

8. Погрешности

Ударопрочность:

Базовая погрешность: ≤3% (от макс. значения шкалы)

Зависимость от частоты:

≤5% (от макс. значения шкалы) Погрешность настройки:

Погрешность повторения: ≤2% Влияние напряжения:

Влияние температуры: ≤0.05% / °C

9. Условия эксплуатации

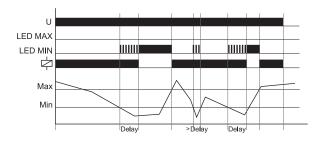
Рабочая температура: -25 - +55°С (в соотв. с IEC 60068-1)

-25 - +40°C (в соотв. с UL 508)

Температура хранения: -25 - +70°C Температура транспортировки: -25 - +70°C Относительная влажность: 15% - 85%

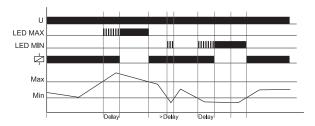
(в соотв. с IEC 60721-3-3 класс 3К3) 3 (в соответствии с IEC 60664-1) Степень грязезащиты:

Виброустойчивость: 10 - 55Hz 0.35mm


(в соответствии с IEC 60068-2-6) 15g 11ms (в соотв. с IEC 60068-2-27)

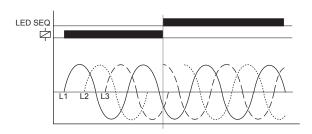
Принцип работы

Во всех режимах работы LEDs MIN и MAX будут мигать поочередно, если установленное значение минимального порога больше, чем значение максимального порога. Если при включении устройства контролируемые параметры измеряемого напряжения вышли за допустимые пороги, то выходное реле останется в состоянии ВЫКЛ. и загорится LED соответствующего порога.

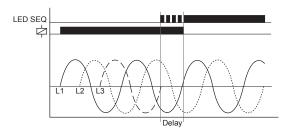

Контроль напряжения на понижение (UNDER, UNDER+SEQ)

Если измеряемое напряжение (среднее значение линейных напряжений) станет меньше значения на МІN-регуляторе, начнется отсчет задержки срабатывания DELAY (красный LED MIN мигает). После завершения отсчета (красный LED MIN горит), выходное реле переключится в состояние ВЫКЛ. (желтый LED не горит). Выходное реле вновь переключится в состояние ВКЛ. (желтый LED горит), если измеряемое напряжение превысит значение установленное на МАХ-регуляторе.

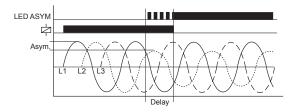
Контроль напряжения в окне (WIN, WIN+SEQ)


Выходное реле переключится в состояние ВКЛ. (желтый LED горит) если измеряемое напряжение (среднее значение линейных напряжений) превысит значение установленное на МIN-регуляторе. Если измеряемое напряжение превысит значение на МАХ-регуляторе, начнется отсчет задержки срабатывания DELAY (красный LED MAX мигает). После завершения (красный LED MAX горит), выходное реле переключится в состояние ВЫКЛ. (желтый LED не горит). Выходное реле вновь переключится в состояние ВКЛ. (желтый LED горит), если значение измеряемого напряжения станет меньше значения на МАХ-регуляторе (красный LED МАХ не горит). Если измеряемое напряжение станет меньше значения на МIN-оегуляторе, начнется отсчет задержки срабатывания DELAY (красный LED MIN мигает). После окончания отсчета (красный LED MIN горит), выходное реле переключится в состояние ВЫКЛ. (желтый LED не горит).

Контроль чередования фаз (SEQ)


Контроль чередования (последовательности) фаз можно подключить для всех режимов работы.

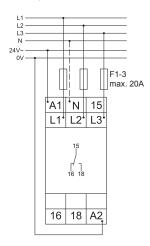
Если устройство обнаружит изменение чередования фаз (красный LED SEQ горит), выходное реле переключится в состояние ВЫКЛ. без отсчета задержки срабатывания - немедленно (желтый LED не горит).


Контроль на обрыв фаз (SEQ)

Если произойдет обрыв одной из фаз, начнется отсчет задержки срабатывания DELAY (красный LED SEQ мигает). После завершения отсчета (красный LED SEQ горит), выходное реле переключится в состояние ВЫКЛ. (желтый LED не горит). Обратное напряжение от потребителей (например, от двигателя работающего лишь от двух фаз) не повлияет на отключение, но может быть проконтролировано с помощью правильно установленного значения асимметрии.

Контроль асимметрии

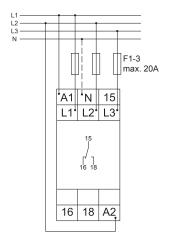
Если асимметрия фазных напряжений превысит значение на ASYM-регуляторе, начнется отсчет задержки срабатывания DELAY (красный LED ASYM мигает). После завершения отсчета (красный LED ASYM горит), выходное реле переключится в состояние ВЫКЛ. (желтый LED не горит). Если нейтральный провод подключен к устройству, то асимметрия контролируется относительно нейтрального провода (Y-напряжения). В этом случае оба значения асимметрии оцениваются и если одно из значений превысит значение на ASYM-регуляторе, то начнется отсчет задержки срабатывания DELAY (красный LED ASYM мигает). После завершения отсчета (красный LED ASYM горит), выходное реле переключится в состояние ВЫКЛ. (желтый LED не горит).

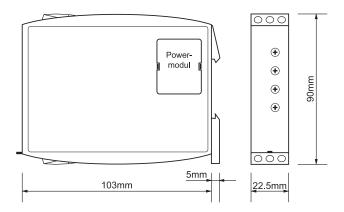

Обрыв нейтрального провода (при помощи оценки асимметрии)

Обрыв нулевого провода между линией электропередачи и техникой зафиксируется как только будет обнаружена асимметрия фазных напряжений относительно нейтрального проводника. Если асимметрия превысит значение на ASYM-регуляторе, начнется отсчет задержки срабатывания DELAY (красный LED ASYM мигает). После завершения отсчета (красный LED ASYM горит), выходное реле переключится в состояние ВЫКЛ. (желтый LED не горит). Обрыв нейтрального провода между нашим устройством и техникой не может быть обнаружен.



Подключение


G2PM400VSY10 с модулем питания 24V AC


G2PM400VSY10 с модулем питания 230V AC

G2PM400VSY10 с модулем питания 400V AC

Габариты

RELEASE 2012/07

Subject to alterations и errors

